Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.740
Filtrar
1.
J Microbiol Biotechnol ; 34(5): 1-14, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563106

RESUMEN

This study explores the potential of plant-based decellularization in regenerative medicine, a pivotal development in tissue engineering focusing on scaffold development, modification, and vascularization. Plant decellularization involves removing cellular components from plant structures, offering an eco-friendly and cost-effective alternative to traditional scaffold materials. The use of plant-derived polymers is critical, presenting both benefits and challenges, notably in mechanical properties. Integration of plant vascular networks represents a significant bioengineering breakthrough, aligning with natural design principles. The paper provides an in-depth analysis of development protocols, scaffold fabrication considerations, and illustrative case studies showcasing plant-based decellularization applications. This technique is transformative, offering sustainable scaffold design solutions with readily available plant materials capable of forming perfusable structures. Ongoing research aims to refine protocols, assess long-term implications, and adapt the process for clinical use, indicating a path toward widespread adoption. Plant-based decellularization holds promise for regenerative medicine, bridging biological sciences with engineering through eco-friendly approaches. Future perspectives include protocol optimization, understanding long-term impacts, clinical scalability, addressing mechanical limitations, fostering collaboration, exploring new research areas, and enhancing education. Collectively, these efforts envision a regenerative future where nature and scientific innovation converge to create sustainable solutions, offering hope for generations to come.

2.
Cell Stem Cell ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593798

RESUMEN

Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.

3.
ACS Appl Bio Mater ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591955

RESUMEN

Salivary glands (SGs) play a vital role in maintaining oral health through the production and release of saliva. Injury to SGs can lead to gland hypofunction and a decrease in saliva secretion manifesting as xerostomia. While symptomatic treatments for xerostomia exist, effective permanent solutions are still lacking, emphasizing the need for innovative approaches. Significant progress has been made in the field of three-dimensional (3D) SG bioengineering for applications in gland regeneration. This has been achieved through a major focus on cell culture techniques, including soluble cues and biomaterial components of the 3D niche. Cells derived from both adult and embryonic SGs have highlighted key in vitro characteristics of SG 3D models. While still in its first decade of exploration, SG spheroids and organoids have so far served as crucial tools to study SG pathophysiology. This review, based on a literature search over the past decade, covers the importance of SG cell types in the realm of their isolation, sourcing, and culture conditions that modulate the 3D microenvironment. We discuss different biomaterials employed for SG culture and the current advances made in bioengineering SG models using them. The success of these 3D cellular models are further evaluated in the context of their applications in organ transplantation and in vitro disease modeling.

4.
Int Wound J ; 21(4): e14871, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591160

RESUMEN

Pressure ulcers including heel ulcers remain a global healthcare concern. This study comprehensively evaluates the biomechanical effectiveness of the market-popular ALLEVYN® LIFE multilayer dressing in preventing heel ulcers. It focuses on the contribution of the frictional sliding occurring between the non-bonded, fully independent layers of this dressing type when the dressing is protecting the body from friction and shear. The layer-on-layer sliding phenomenon, which this dressing design enables, named here the frictional energy absorber effectiveness (FEAE), absorbs approximately 30%-45% of the mechanical energy resulting from the foot weight, friction and shear acting to distort soft tissues in a supine position, thereby reducing the risk of heel ulcers. Introducing the novel theoretical FEAE formulation, new laboratory methods to quantify the FEAE and a review of relevant clinical studies, this research underlines the importance of the FEAE in protecting the heels of at-risk patients. The work builds on a decade of research published by our group in analysing and evaluating dressing designs for pressure ulcer prevention and will be useful for clinicians, manufacturers, regulators and reimbursing bodies in assessing the effectiveness of dressings indicated or considered for prophylactic use.


Asunto(s)
Úlcera por Presión , Humanos , Úlcera por Presión/prevención & control , Fricción , Úlcera , Vendajes , Cuidados de la Piel , Talón
5.
STAR Protoc ; 5(2): 102994, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38568815

RESUMEN

Here, we present a protocol for 3D printing heart tissues using thiol-norbornene photoclick collagen (NorCol). We describe steps for synthesizing NorCol, preparing bioink and the support bath, and cell-laden printing. We then detail procedures for the loading of C2C12 cells into NorCol, ensuring structural integrity and cell viability after printing. This protocol is adaptable to various cell lines and allows for the printing of diverse complex structures, which can be used in drug screening and disease modeling.

6.
STAR Protoc ; 5(2): 102999, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38573865

RESUMEN

The microbial transcription factor YhaJ responds to 2,4-dinitrotoluene (DNT) derivatives. Here, we describe steps for overexpression and purification of the protein, characterization for the binding of a DNT derivative methylhydroquinone, and crystallization by using a random seeding technique. We then detail procedures for structure determination by employing the crystal-twin resolving processes. This protocol can also be performed using other DNT derivatives. For complete details on the use and execution of this protocol, please refer to Kim et al.1.

7.
Sci Rep ; 14(1): 7040, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575597

RESUMEN

Whole lung engineering and the transplantation of its products is an ambitious goal and ultimately a viable solution for alleviating the donor-shortage crisis for lung transplants. There are several limitations currently impeding progress in the field with a major obstacle being efficient revascularization of decellularized scaffolds, which requires an extremely large number of cells when using larger pre-clinical animal models. Here, we developed a simple but effective experimental pulmonary bioengineering platform by utilizing the lung as a scaffold. Revascularization of pulmonary vasculature using human umbilical cord vein endothelial cells was feasible using a novel in-house developed perfusion-based bioreactor. The endothelial lumens formed in the peripheral alveolar area were confirmed using a transmission electron microscope. The quality of engineered lung vasculature was evaluated using box-counting analysis of histological images. The engineered mouse lungs were successfully transplanted into the orthotopic thoracic cavity. The engineered vasculature in the lung scaffold showed blood perfusion after transplantation without significant hemorrhage. The mouse-based lung bioengineering system can be utilized as an efficient ex-vivo screening platform for lung tissue engineering.


Asunto(s)
Células Endoteliales , Trasplante de Pulmón , Animales , Humanos , Andamios del Tejido , Pulmón/irrigación sanguínea , Ingeniería de Tejidos/métodos , Trasplante de Pulmón/métodos , Perfusión , Reactores Biológicos , Matriz Extracelular
8.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38610410

RESUMEN

Frameworks for human activity recognition (HAR) can be applied in the clinical environment for monitoring patients' motor and functional abilities either remotely or within a rehabilitation program. Deep Learning (DL) models can be exploited to perform HAR by means of raw data, thus avoiding time-demanding feature engineering operations. Most works targeting HAR with DL-based architectures have tested the workflow performance on data related to a separate execution of the tasks. Hence, a paucity in the literature has been found with regard to frameworks aimed at recognizing continuously executed motor actions. In this article, the authors present the design, development, and testing of a DL-based workflow targeting continuous human activity recognition (CHAR). The model was trained on the data recorded from ten healthy subjects and tested on eight different subjects. Despite the limited sample size, the authors claim the capability of the proposed framework to accurately classify motor actions within a feasible time, thus making it potentially useful in a clinical scenario.


Asunto(s)
Aprendizaje Profundo , Humanos , Actividades Humanas , Actividades Cotidianas , Ingeniería , Voluntarios Sanos
9.
Mater Today Bio ; 26: 101045, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600921

RESUMEN

The endometrium undergoes a series of precise monthly changes under the regulation of dynamic levels of ovarian hormones that are characterized by repeated shedding and subsequent regeneration without scarring. This provides the potential for wound healing during endometrial injuries. Bioengineering materials highlight the faithful replication of constitutive cells and the extracellular matrix that simulates the physical and biomechanical properties of the endometrium to a larger extent. Significant progress has been made in this field, and functional endometrial tissue bioengineering allows an in-depth investigation of regulatory factors for endometrial and myometrial defects in vitro and provides highly therapeutic methods to alleviate obstetric and gynecological complications. However, much remains to be learned about the latest progress in the application of bioengineering technologies to the human endometrium. Here, we summarize the existing developments in biomaterials and bioengineering models for endometrial regeneration and improving the female reproductive potential.

10.
Sci Rep ; 14(1): 8648, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622156

RESUMEN

Geotextiles made from plant fibers creates a suitable environment for plant growth as part of soil bioengineering techniques. The faster decomposition of plant fiber geotextiles compared to synthetic ones demands the use of composites that enhance their waterproofing and extend their durability in the environment. The objective of this work was to evaluate the resistance of a geotextile made with Thypha domingensis to degradation caused by climatic variables. Tensile strength tests were conducted in the laboratory in order to evaluate the degradation of geotextiles treated with single and double layers of waterproofing resin. Based on Scanning Electron Microscopy (SEM) images, it was verified that applying double layer of waterproofing resin delays the fibers degradation up to 120 days of exposure to the effects of climatic variables other than temperature. The maximum resistance losses due to the geotextile's exposure to degradation were statistically significant for all three treatments: control-without waterproofing resin, with one layer resin, and with two layers resin. Therefore, waterproofing resin, provides a long-term protective solution for geotextiles made from cattail fibers.


Asunto(s)
Typhaceae , Resistencia a la Tracción , Estructuras de las Plantas
11.
STAR Protoc ; 5(2): 103022, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38625797

RESUMEN

Precise integration of DNA constructs greater than 3 kb into mouse zygotes is difficult. Here, we present a protocol for large DNA transgenesis in mice using the Cas9+Bxb1 toolbox. We describe steps for choosing mouse strains with preplaced attachment sites. We then detail procedures for microinjecting mouse zygotes with the plasmid donor DNA construct to generate transgenic mice by recombination-mediated cassette exchange. This protocol has the potential for application in exploring the functional implications of large structural variations in cancer. For complete details on the use and execution of this protocol, please refer to Low et al.1 and Hosur et al.2.

12.
STAR Protoc ; 5(2): 102976, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38635398

RESUMEN

Biological functions of glycans are intimately linked to fine details in branches and linkages, which make structural identification extremely challenging. Here, we present a protocol for automated N-glycan sequencing using multi-stage mass spectrometry (MSn). We describe steps for release/purification and derivation of glycans and procedures for MSn scanning. We then detail "glycan intelligent precursor selection" to computationally guide MSn experiments. The protocol can be used for both discrete individual glycans and isomeric glycan mixtures. For complete details on the use and execution of this protocol, please refer to Sun et al.,1 Huang et al.,2 and Huang et al.3.

13.
Res Vet Sci ; 173: 105257, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38636324

RESUMEN

Decellularization is an innovative method to create natural scaffolds by removing all cellular materials while preserving the composition and three-dimensional ultrastructure of the extracellular matrix (ECM). The obtention of decellularized reproductive organs in cats might facilitate the development of assisted reproductive techniques not only in this species but also in other felids. The aim was to compare the efficiency of three decellularization protocols on reproductive organs (ovary, oviduct, and uterine horn) in domestic cats. The decellularization protocol involved 0.1% sodium dodecyl sulfate and 1%Triton X-100. Protocol 1 (P1) entailed 2-cycles of decellularization using these detergents. Protocol 2 (P2) was like P1 but included 3-cycles. Protocol 3 (P3) was similar to P2, with the addition of deoxyribonuclease incubation. Reproductive organs from nine cats were separated into two sides. One side served as the control (non-decellularized organ) while the contralateral side was the treated group (decellularized organ). The treated organs were subdivided into 3 groups (n = 3 per group) for each protocol. Both control and treated samples were analyzed for DNA content, histology (nuclear and ECM (collagen, elastin, and glycosaminoglycans (GAGs)) density), ultrastructure by electron microscopy, and cytotoxicity. The results of the study showed that P3 was the only protocol that displayed no nucleus residue and significantly reduced DNA content in decellularized samples (in all the studied organs) compared to the control (P < 0.05). The ECM content in the ovaries remained similar across all protocols compared with controls (P > 0.05). However, elastic fibers and GAGs decreased in decellularized oviducts (P < 0.05), while collagen levels remained unchanged (P > 0.05). Regarding the uterus, the ECM content decreased in decellularized uterine horns from P3 (P < 0.05). Electron microscopy revealed that the microarchitecture of the decellularized samples was maintained compared to controls. The decellularized tissues, upon being washed for 24 h, showed cytocompatibility following co-incubation with sperm. In conclusion, when comparing different decellularization methods, P3 proved to be the most efficient in removing nuclear material from reproductive organs compared to P1 and P2. P3 demonstrated its success in decellularizing ovarian samples by significantly decreasing DNA content while maintaining ECM components and tissue microarchitecture. However, P3 was less effective in maintaining ECM contents in decellularized oviducts and uterine horns.

14.
Adv Mater ; : e2313776, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639337

RESUMEN

Advancing biofabrication towards manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made towards this goal, and relatively high cell densities have been achieved, surpassing the limited cell densities of conventional platforms, pushing the current boundaries a step closer to achieving tissue-like cell densities. On this focus, herein we discuss the overarching challenges in the bioprocessing of cell-rich living inks into clinically-grade engineered tissues, as well as highlight the most recent advances in cell-rich living ink formulations and their processing technologies. Additionally, an overview of the foreseen developments in the field is provided and critically discussed. This article is protected by copyright. All rights reserved.

15.
STAR Protoc ; 5(2): 103014, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615317

RESUMEN

Genomic manipulation of Yersinia ruckeri, a pathogen of salmonid fish species, is essential for understanding bacterial physiology and virulence. Here, we present a protocol for genomic recombineering in Y. ruckeri, a species reluctant to standard genomic engineering, using CRISPR Cas12a coupled with the λ Red system. We describe steps for identifying protospacer guides, preparing repair template plasmids, and electroporating Yersinia cells with Cpf1 and protospacer plasmids with homologous arms. We then detail procedures for genome editing and plasmid curing.

16.
iScience ; 27(5): 109641, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646166

RESUMEN

Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration. We have developed a biodegradable hydrogel - Kuragel, with the ability to promote corneal regeneration. Functionalized gelatin and hyaluronic acid form photo-crosslinkable hydrogel with transparency and compressive modulus similar to healthy human cornea. Kuragel composition was tuned to achieve sufficient adhesive strength for sutureless integration to host tissue, with minimal swelling post-administration. Studies in the New Zealand rabbit mechanical injury model affecting corneal epithelium and stroma demonstrate that Kuragel efficiently promotes re-epithelialization within 1 month of administration, while stroma and sub-basal nerve plexus regenerate within 3 months. We propose Kuragel as a regenerative treatment for patients suffering from corneal defects including thinning, by restoration of transparency and thickness.

17.
ACS Biomater Sci Eng ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605468

RESUMEN

The application of bioengineering techniques for achieving bone regeneration in the oral environment is an increasingly prominent field. However, the clinical use of synthetic materials carries certain risks. The liquid phase of concentrated growth factor (LPCGF), as a biologically derived material, exhibits superior biocompatibility. In this study, LPCGF was employed as a tissue engineering scaffold, hosting dental follicle cells (DFCs) to facilitate bone regeneration. Both in vivo and in vitro experimental results demonstrate that this platform significantly enhances the expression of osteogenic markers in DFCs, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and type I collagen (Col1a1). Simultaneously, it reduces the expression of inflammation-related genes, particularly interleukin-6 (IL-6) and interleukin-8 (IL-8), thereby alleviating the negative impact of the inflammatory microenvironment on DFCs. Further investigation into potential mechanisms reveals that this process is regulated over time by the WNT pathway. Our research results demonstrate that LPCGF, with its favorable physical characteristics, holds great potential as a scaffold. It can effectively carry DFCs, thereby providing an optimal initial environment for bone regeneration. Furthermore, LPCGF endeavors to closely mimic the mechanisms of bone healing post-trauma to facilitate bone formation. This offers new perspectives and insights into bone regeneration engineering.

18.
Bioresour Bioprocess ; 11(1): 25, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647931

RESUMEN

Monoclonal antibodies (mAbs) require a high level of purity for regulatory approval and safe administration. High-molecular weight (HMW) species are a common impurity associated with mAb therapies. Hydrophobic interaction chromatography (HIC) resins are often used to remove these HMW impurities. Determination of a suitable HIC resin can be a time and resource-intensive process. In this study, we modeled the chromatographic behavior of seven mAbs across 13 HIC resins using measurements of surface hydrophobicity, surface charge, and thermal stability for mAbs, and hydrophobicity and zeta-potential for HIC resins with high fit quality (adjusted R2 > 0.80). We identified zeta-potential as a novel key modeling parameter. When using these models to select a HIC resin for HMW clearance of a test mAb, we were able to achieve 60% HMW clearance and 89% recovery. These models can be used to expedite the downstream process development for mAbs in an industry setting.

19.
MethodsX ; 12: 102703, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660039

RESUMEN

It is a fact that materials contract or expand by changing their temperature. In a certain temperature range, the distance between atoms changes linearly in some materials whereas it changes non-linearly in other materials. X-ray diffraction (XRD) is one of the popular techniques used for understanding the crystal structure of these materials. However, XRD is mostly carried in open air at room temperature or require very expensive high vacuum set-ups and expensive temperature controllers for low temperature studies. Here we propose a design of a variable temperature X-ray diffractometer that can operate in dual modes: heating and cooling in open air. The proposed diffractometer has been used for studying structural phase transition in chromium nitride thin films. The results demonstrated not only the effectiveness of our proposed setup but also its applicability in advancing our understanding of complex material behaviors.•A new design of a variable temperature X-ray diffractometer has been introduced in this paper, which can be used for acquiring XRD data while heating or cooling samples in open air.•As a proof of concept, the newly designed variable temperature X-ray diffractometer is used for studying structural phase transition in CrN thin films.

20.
STAR Protoc ; 5(2): 103000, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38598333

RESUMEN

We present a method of in vitro/in vivo protein detection by pairing CRISPR-Cas9 genome editing with the NanoBiT system. We describe steps for cell culturing, in vitro CRISPR-Cas9 ribonucleoprotein delivery, cell monitoring, efficiency assessments, and edit analysis through HiBiT assays. We then detail procedures to determine edit specificity through genomic DNA analysis, small interfering RNA reverse transfection, and HiBiT blotting. This protocol is simple to execute and multifunctional, and it enables high-throughput screens on endogenous proteins to be conducted with ease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...